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Abstract--A study has been made of the motion of long bubbles in inclined pipes containing viscous 
Newtonian and non-Newtonian liquids. A semi-theoretical expression for the rise velocity of air bubbles 
in water is derived on the hypothesis that the dominant factor is the momentum exchange of the bubble 
underflow, i.e. the bubble nose shape. The correlation calls on empirical inputs from established literature 
on bubble rise speeds at high Reynolds number. The effects of increasing Newtonian viscosity are analysed 
with reference to the momentum exchange and it is shown how viscosity reduces the inclination 
dependence of the bubble Froude number. Results from an experimental survey in seven different 
non-Newtonian liquids in three different diameter pipes are presented. These data are correlated so as to 
decouple the effects of surface tension and viscosity. An empirical relation is proposed for the effective 
shear rate in the fluid travelling around the bubble nose. Our correlation is compared to literature data 
from a broad range of Reynolds numbers with excellent agreement except at shallow angles. 
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1. I N T R O D U C T I O N  

Over  the pas t  few decades  much  work  has addressed  the mo t ion  o f  long bubbles  t ravel l ing in 
vert ical ,  incl ined and  hor i zon ta l  tubes.  The  vert ical  case is best  unde r s tood  and m a n y  theoret ical  
and  exper imenta l  papers  are  now avai lab le  since the founda t ion  studies o f  Davies  & Tay lo r  (1950) 
and Dumi t r e scu  (1949). They  carr ied  out  po ten t ia l  flow calcula t ions  based  on an assumed spherical  
bubb le  nose shape.  They der ived theore t ica l  F r o u d e  numbers  very close to 0.35 which is now the 
accepted  value for tubes greater  than  a b o u t  0.02 m in d iamete r  (Reynolds  number  > 200, E6tvos  
number  > 70), as conf i rmed exper imenta l ly  by Whi te  & Bea rdmore  (1962). Zukosk i ' s  (1966) survey 
o f  the effects o f  surface tension,  viscosi ty and incl inat ion not  only  conf i rmed the above  result  but  
also p rov ided  da t a  to suggest  that  a l imit ing F r o u d e  n u m b e r  o f  a b o u t  0.5 exists for  hor izon ta l  
m o t i o n  at  high Reyno lds  and E6 tvos  numbers .  Benjamin  (1968) subsequent ly  showed,  theoret i -  
cally, tha t  the value is indeed 0.5 precisely for lossless p l ana r  flow and a b o u t  0.54 for pipes when 
a cor rec t ion  for the geomet ry  is in t roduced .  Coue t  et  al. (1987) carr ied out  p l ana r  inviscid 
ca lcula t ions  for  the incl ined rise o f  air  bubbles .  Thei r  solut ion required tha t  the con tac t  angle  at  
the bubb le  s t agna t ion  po in t  was a lways  ~/2,  even though  a value o f  7r/3 had  previously  been 
deduced  by Stokes  based  on an analysis  o f  the ext reme shape o f  sharp  crested water  waves and  
was la ter  used by Von  K a r m a n  in his analysis  o f  gravi ty  currents  (see Benjamin 1968). In fact, both  
o f  these are ideal ized prescr ip t ions  c o m p a r e d  to real wet t ing behaviour .  Nevertheless ,  their  results 
agreed ext remely  well with the velocity and p h o t o g r a p h i c  da t a  o f  Maner i  & Zube r  (1974). Coue t  
et  al. also suggested a fo rmula  for  the F r o u d e  number  at  any  inc l ina t ion  for Reyno lds  numbers  
Re > 200 and E6tvos  number s  E6 > 70. Thei r  ca lcula t ion  supposed  l imit ing cases o f  vanishing 
surface tens ion effects, a l though  Z u k o s k i ' s  (1966) incl ined rise veloci ty da t a  did  not  p rovide  
evidence tha t  such a cond i t ion  is typical ly  a t ta ined.  
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Weber et al. (1986) investigated bubble rise in high viscosity Newtonian liquids and presented 
data for dependence of Froude number, Fr, on E6 and Mo (Morton number). A purely empirical 
at tempt was made to correlate the values of  Fr obtained with inclined pipes in terms of the limiting 
values of  Fr for vertical and horizontal pipes. A reasonable fit was obtained, although there is some 
uncertainty with respect to their values assigned to the supposedly steady Froude number obtained 
in horizontal small tubes with viscosities as high as 6.12 Pa s. In viscosity dominated flow, the 
frictional retardation increases as the bubble propagates from the tube entrance, so the velocity 
should always decrease with increasing length of bubble. Presumably, in referring to horizontal 
Froude number, Weber et al. related their measurements to either nearly horizontal or to the 
starting Fr, or perhaps to bubbles of  finite length. 

Mao & Dukler (1991) used a two-equation (k c) turbulence model to calculate the flow field 
around a vertically rising Taylor bubble, arguing that such methods are often adequate in situations 
with little or no recirculation. However, these models do suffer from uncertainties relating to 
rapidly accelerated flow around the bubble nose and in formulating turbulence damping near the 
gas-liquid interface which Mao & Dukler assume identical to that at a solid boundary. 

Our concern here is bubble behaviour in non-Newtonian liquids with particular reference to 
pseudoplastic properties. Niranjan et al. (1988) investigated mass transfer of  gas from vertically 
rising Taylor bubbles in viscous Newtonian and non-Newtonian liquids. They used Wallis' (1969) 
relation for bubble speed assigning an apparent  viscosity for their non-Newtonian CMC solutions 
based on a shear rate (~)) equal to twice the ratio of  bubble velocity to pipe diameter. Their 
comparison of measured and predicted rise speeds showed excellent agreement. However, this is 
not really surprising, as the power law indices, n, were at least 0.82 or, in other words, the effective 
viscosities (proportional to °)" ~) were only weak functions of  °). 

The experimental investigation presented here follows earlier methods reviewed above. Also, we 
propose an extension to Benjamin's (1968) theoretical approach, here incorporating the momentum 
exchange which equilibrates bubble motion in inclined flows. Scaling formulae are deduced for the 
rise velocity of air bubbles in water, based jointly on Zukoski 's  data and on a calculation of the 
drainage film behind the bubble nose where wall shear and gravitational forces are balanced. Rise 
velocity data for bubbles in non-Newtonian media are then correlated with the bubble Reynolds 
number as a correction to the a i~wate r  formula, using an effective shear rate which depends on 
both the pipe diameter and its angle of  inclination. 

2. M O M E N T U M  A N A L Y S I S  FOR AIR BUBBLES IN W A T E R  

Referring to figure l(a) and (b) we can identify an integral momentum balance between stations 
far upstream and far downstream of the bubble nose. Our approach serves to focus attention on 
the momentum adjustment around the bubble nose [the "excess volume" of figure l(a)] which must 
balance the bubble buoyancy in this region. Downstream of the nose [past Z - Z  in figure l(a)] the 
weight of  draining film is balanced by wall friction and so has no effect on rise velocity. Point O 
in figure l(a) is a stagnation point and the pressure is constant (here zero) everywhere along the 
interface. Assuming inviscid flow, it follows from Bernoulli's theorem that, referring to this datum, 
the pressure at the top of the tube cross-section far upstream is then given in terms of liquid density 
p and rise velocity uj by 

P0 = -½pu~ [1] 

with hydrostatic pressure variation across the flow section. The total pressure force, including the 
hydrostatic pressure acting over a section far upstream, is therefore 

D 
Po A + pg ~ A cos 0 [2] 

where D is the pipe diameter, A is the pipe cross-sectional area and 0 is the inclination. Adding 
to this the momentum flux pu~A gives the flow force (Benjamin 1968) 

D 
1 2 St =~pu tA  + p g - j  A cos0  [3] 
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Figure 1. Schematic of an extended bubble rising in a closed, inclined, cylindrical tube. 

The pressure variat ion is also hydrostat ic  at far downstream stations, from which it follows that  
the flow force here, 

S2 = pg~D .cos0. [1 - E]A + pu~ [1 -- e]A [4] 

where ~D is the distance between the interface and the centre o f  pressure in the film, i.e. following 
the approach  outlined in the first part  o f  the appendix, with 

1 4¢ 
= 5 - ~ + 3~  [Sl 

This relation follows from an assumption that the liquid film sectional interface takes up a 
semi-elliptical form, as discussed further in the appendix. The axial m o m e n t u m  balance across the 
bubble nose region is then given by 

$2 - SI = p Vg" sin0. [6] 

Combin ing  [3], [4] and [6] leads to 

[ ,2  o l pu~(l -- c)A + og cos0"D~( l  -- c)A -- ~pu~A + o g ~  A cos0 = oVgsinO [71 
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Continuity then requires 
Ul 

/ J 2 -  

s u c h  t h a t  c o m b i n i n g  [5 ] ,  [7]  a n d  [8]  w e  o b t a i n  

[8] 

V sinO 1 [{ 41 {4 3)] AD = 5  L2( 1 -~)3 + c 2 1 - ~  +~ ~ - 2  cosO [9] 

where u~/(gD) is the square of  the bubble Froude number. Values for the downstream void fraction 
follow directly from considerations of  continuity and the equilibrium between the resolved weight 
of  the liquid film and the wall frictional force, together with Zukoski 's  (1966) data and our own 
air-water  rise velocity data. At high Re the incremental increase in wall shear stress is less than 
at low Re. Since the depth of the equilibrium film is determined by a balance between resolved 
gravity and wall shear stress it follows that ~ is a weak function of Re when Re is high. However, 

is strongly dependent on inclination, as displayed in the following correlation (figure 2), the 
development of  which is described in the second part of the appendix: 

f 0 )02~0~ 
= 0 . 5 9  + 0 . 3 0 3 1  I10] 

With this formula for ~, [9] then expresses the dependence of Fr on the fractional excess volume, 
V' = V sin O/AD. The latter depends on inclination and surface tension and here we use Zukoski 's  
data to calculate this dependence at high Reynolds number, as shown in figure 3. At 90 c' the value 
of V' is the same for all pipe sizes, which is not surprising since the Froude number is also the 
same for these high Reynolds number flows. The agreement demonstrates excellent compatibility 
between our momentum balance above and the experimental data. At the lowest incidence (1/2 
degree) the points do not coincide, a disparity which we attribute to inadequacy of our 
approximation for the bubble shape in these limits (see appendix). Overall however, the behaviour 
broadly accords with our formula for the inclination dependence, especially with respect to the peak 
Froude numbers at 0 between 45 and 60 degrees. All of  these data are for water so surface tension 
is constant (a ~ 0.07 N/m) and E6 (=pgO2/a) thus varies as the square of  the pipe diameter. At 
high E6 the inertial forces dominate and the bubble nose underflow extends a greater distance 
downstream before achieving equilibrium film drainage flow. This corresponds to a visibly sharper 
bubble nose (Zukoski 1966), hence a greater value for V' and large Ft. Low E6 values correspond 
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Figure 4. C o m p a r i s o n  o f  Z u k o s k i ' s  (1966) air water  data  
with our  corre lat ion  [15]. 

Figure 5. Shear stress vs strain rate data  and  power  law fits 
for s o m e  o f  the so lut ions  used in our  exper imenta l  work. 

to increased surface tension forces which cause the nose to become more rounded, resulting in 
reduced excess volume and Froude number. 

Returning to figure 3, we note that V' behaves approximately as the sum o f a  sinusoidal variation 
and a linear trend. That is, for empirical correlation purposes: 

V s i n 0 = a  sin 2 0 + r n f 0 1 + c  [11] 
AD L,.)oj 

Surface tension dependence can be incorporated in this representation, according to which there 
is the fol lowing least squares fit for the coefficients: 

a = 8.347[log,0 E6] °2 -- 8.359 

m = --0.1641og10 E6 + 1.555 

c = 0.164 log,0 E6 - 0.463. 

To  sum up, we now have from [9] the Froude number 

3 , sin 0 [ , (1 + _  )]cos Fr 
~/(1 +~) 

[12] 

[13] 

[14] 

[15] 

which with [10] and [11] [14] provides a simple physically-based formula for rise velocity in water 
when E6 > 60. Figure 4 confirms how well the correlation reproduces Zukoski's  data for all 
inclinations. 

Table  1. Physical  properties  o f  po lymer  solut ions  

Surface Approx .  Cons i s tency  
Conc. tens ion density  factor  K Pseudo-plast ic i ty  

Liquid n a m e  (wt%) (N/m) (kg/m 3) (S.I. units) index,  n 

Carbopol 981 with modif ied pH 0.5 0.077 I000 8.204 0.318 
0.25 0.077 1000 2.927 0.386 
0.125 0.0765 1000 1.016 0.485 

Polyacry lamide  2.1 0.076 1000 30.158 0.1901 
0.8 0.075 1000 8.526 0.2646 
0.4 0.076 1000 3.127 0.3406 
0.2 0.0755 1000 1.6704 0.3307 
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Figure 6. Tilting tube experimental apparatus for measurement of the rise velocity of single large bubbles 
in different tubes for all inclinations. 

3. E X T E N S I O N  TO N E W T O N I A N  E F F E C T S  

To examine low Reynolds numbers  effects, we must  decouple the influence o f  viscosity # and 
surface tension a. This can be achieved in terms of  the scale ratio 

Fr(E6,  0, Re) 
F - [161 

Fr(E6, 0, ~ )  

versus Re. For  Re less than about  3, Zukoski ' s  data  (0 > 30 degrees) were well described by Wallis' 
(1969) empirical relation for vertical tubes (uz = O.OlpgD2/#). Assigning Taylor ' s  asymptot ic  Fr 
(E6, 90, ~ )  = 0.35, Wallis '  correlat ion can then be expressed as 

F = 0 . 2 8 5 7 x / ~  for Re < 3. [17] 

Wallis suggested an upper  limit o f  Re < 1/2 but the data summary  presented later (section 6) shows 
the approximat ion  is sound up to Re ~ 3. 

Weber  et al. (1986) presented data for air bubbles in a 0.0221 m diameter tube containing 100% 
corn syrup (viscosity 6.12 Pa s) for which Fr only varied from 0.03 to 0.04 for 0 ranging from l0 
to 90 °. The corresponding Reynolds number  was about  0.08. Wallis'  correlation, based on data 
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for vertically rising bubbles, provides Fr ~ 0.03. Inspection of other data (Runge & Wallis 1965) 
shows that as viscosity is increased the Fr ratio peak value to vertical value is decreased. Clearly, 
if the correlation holds for a broad range of inclinations then the explanation must be that V' 
remains essentially constant. This means that as 0 reduces V must increase in a rather precise 
fashion to compensate for the reduction in the axial buoyancy. 

4. E X P E R I M E N T A L  E X T E N S I O N  TO N O N - N E W T O N I A N  FLUIDS 

A simple tilting tube rig, as described below, was used to measure the variation of bubble rise 
velocity with respect to pipe diameter, inclination angle and rheological properties. The polymers 
used were Carbopol  981 (BF Goodrich) and polyacrylamide (DP9-2530, Allied Colloids). These 
powders were dissolved in water to produce solutions with concentrations ranging from 0.125 to 
2.1 wt%. A small amount  of  I M N a O H  solution was added to achieve transparency of the 
Carbopol  solution at pH 7. This modified the rheology somewhat, introducing a yield stress and 
generally thickening its consistency and apparently increasing visco-elasticity (a Weissenberg effect 
was observed during preparatory mixing when N a O H  was added). The rheological parameters were 
measured with a concentric cylinder rheometer (Contraves) and surface tension with a Wilhelmy 
plate tensiometer (Whites Ltd). Density was taken to be that of  water for all the solutions since 
water content was generally higher than 98%. Moreover, for the thicker liquids at low shear rates, 
tiny bubbles become trapped due to the high viscosities and/or yield stresses and these made density 
measurement difficult. Table 1 and figure 5 show physical properties, power law constants and 
rheograms. 

The simple apparatus is shown in figure 6. Tubes of  various diameters (0.025, 0.045 and 0.07 m) 
are attached to a metal frame which is pivoted centrally. The tubes are partially filled with test 
solution, leaving an air gap sufficient to supply the test bubble and then sealed with a screw cap. 
The test bubbles were all sufficiently long that their rise velocities were sensibly independent of  
length. The tube is rapidly rotated manually to the required inclination angle and the bubble rise 
velocity is measured. This is done automatically by a digital timer triggered through the 
interruption of two infra-red beams placed a known distance apart on the top quarter of  the tube. 
Tests were carried out using a number of  different detector intervals and axial positions, to confirm 
the bubbles rapidly ( <  5 diameters of travel) attained equilibrium velocity. Before each run the 
tubes were thoroughly cleaned with salt water, detergent, distilled water and acetone, thereby 
ensuring removal of  surfactant impurities. The rise velocity was measured ten times for any one 
combination of pipe, fluid and inclination, providing Froude number measurements with re- 
peatability to within 2%. Experiments with the most concentrated (2.1 wt%) polyacrylamide 
solution in the smaller diameter tubes showed that there was an extra slight (1-2%) effect on bubble 
velocity between consecutive tests under nominally identical conditions. To minimize this 
thixotropic effect, each reading was taken after the fluid had been sheared twice by previous bubbles 
and following a stagnant period of a few minutes thereby ensuring that the recent shear history 
of the fluid was the same in all cases. A more detailed description of the experimental technique 
is given in Carew (1993). 

5. D I S C U S S I O N  OF E X P E R I M E N T A L  R E S U L T S  

Figures 7 to 12 show Fr versus 0 for fixed E6 in seven different non-Newtonian liquids and three 
different pipes. All the data points follow the same basic trend, namely, that as the inclination angle 
is reduced from 90 degrees, the Froude number first increases, reaching a maximum at between 
70 and 30 degrees inclination and then falling as 0 approaches zero. We recall from section 1 that 
the inviscid case defines limiting values for vertical and horizontal Froude numbers. Indeed, with 
the more dilute solutions in the 0.07 m pipe (E6 ~ 630) there is a striking similarity between the 
basic trend for low viscosity Newtonian data (water; see figure 4) and the present data (say 
0.125 wt% Carbopol;  see figure 9). Figure 7 displays low E6 (small diameter) data and reveals a 
similarity between viscous Newtonian data (section 3) and non-Newtonian data in terms of the 
ratio of  peak to vertical Froude numbers. In all cases, Fr increases as inclination is reduced from 
90 degrees and at a rate which is governed by concentration. As in the Newtonian case, 
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Figure 10. Rise velocity da ta  and our  empirical  relation for 
a 0.025 m tube conta in ing  po lyacry lamide  solution. 
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Figure  11. Rise velocity da t a  and  our  empir ical  relat ion for 
a 0.045 m tube con ta in ing  po lyacry lamide  solution. 
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Figure  12. Rise velocity da t a  and  our  empir ical  relation for 
a 0.07 m tube conta in ing  po lyacry lamide  solution. 

Fr  dependence on inclination is reduced as viscous effects become more  important .  Figures 8 and 
9 show an al together more  Newtonian  (high Re) response as compared  with figure 4, except for 
angles lower than about  30 degrees. The low angle behaviour  is better illustrated with reference 
to figures 10-12. Figure 10 shows how increasing polymer  concentra t ion results in decreasing 
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Froude number such that the bubble rise speed rapidly approaches zero at inclinations close to 
horizontal. Moreover, increasing concentration (viscosity) amplifies the reduction in Fr. For 
example, a comparison of figures 4 and l0 shows that inclination has to be as high as 45 degrees 
before Fr variation with 0 follows a similar trend to that observed with water. Note, also, that the 
angle above which Fr variation mimics that found with water reduces as the polymer concentration 
reduces or the pipe diameter and E6 increases (figures 11 and 12). At shallower inclinations, the 
rheological forces begin to dominate causing Fr to approach zero rather than some finite value as 
0 tends to zero. This phenomena of viscosity and rheology induced departure from the high Re 
trend at low angles can further be explained with reference to figures 13 and 14, as follows. 

Figure 13 compares our non-Newtonian data with Newtonian data from literature sources 
(75 < E6 < 82). The clearest illustration of non-Newtonian effects is given by contrasting the 
present results for 0.8 wt% PAA with Weber et al.'s (1986) data for 0.4642 Pa s viscosity. For 0 
between 50 and 90 degrees, the two sets coincide almost exactly. This suggests that the 
non-Newtonian fluid is sheared at the same rate independent of angle and so flows with a constant 
viscosity. However, for 0 < 50 degrees the axial component of the "excess weight" rapidly falls with 
decreasing O, causing a reduction in Fr and hence also a reduction in the effective shear rate. Figurc 
14 compares the rheologies of these two fluids and we note that for shear rates of less than 50 
reciprocal seconds, the 0.8 wt% PAA has an apparent viscosity which significantly exceeds that of 
the Newtonian liquid. Interestingly, this intersection occurs at a point below which shear stress 
variation with shear rate is most pronounced. As shear rate increases, the ratio of shear stress to 
shear rate (apparent viscosity) continues to fall at an ever decreasing rate. In other words, for 
shallow angles velocities and shear rates are low and viscosities are high, whereas at steeper 
inclinations velocities and shear rates are increased and viscosities decreased allowing inertially 
dominated flow to occur (figure 4). Enlarging the pipe diameter causes an increase in E6 and Fr 
is also increased, causing an increase in shear rate. Figure 12 shows how rise data for 0.8 wt% PAA 
in a 0.07 m tube follow curves which resemble Newtonian equivalents even at angles as low as 10 
degrees. 

The general implication, then, is that at steeper inclinations and in larger pipes, the shear 
behaviour around the bubble nose can probably be adequately represented by an "effective '" or 
"apparent" viscosity because the strain rate in the bubble nose zone is located in the upper part 
of the rheogram. At lower angles and in smaller pipes the behaviour is governed by the liquid 
theology and the bubble rise speed rapidly approaches zero as inclination vanishes. As shown in 
table 1, we have fitted our rheograms with a power law. However, figure 5 shows that the more 
concentrated solutions could be well represented by a yield stress constitutive equation such as the 
Herschel-Bulkley model (Skelland 1967): 

r = r~. + R~' [I 8] 

where v and rx are shear stress and yield stress respectively and R and s are power law type 
constants, noting that the presence of a "true" yield stress can only be determined through detailed 
measurements at extremely low shear rate (Nguyen & Boger 1992). The effect of a yield stress in 
the smaller tubes could be to arrest bubble motion at some critical inclination. Indeed the results 
for 0.5 wt% carbopol on figure 13 indicate that the bubble might be arrested at 0 ~ 5 

6. C O R R E L A T I O N  FOR N O N - N E W T O N I A N  B E H A V I O U R  

To account quantitatively for non-Newtonian behaviour we return to the correlation approach 
described in sections 2 and 3 and again seek to decouple the viscous and surface tension effects. 
In figure 15, the scaling factor F (from [16]) for all earlier data is plotted versus Reynolds number 
based on the apparent viscosity associated with bubble strain rate, i.e. now dependent on pipe size 
and inclination angle. The apparent viscosity used here was assigned as follows. Firstly, we 
supposed that the effective shear rate ~;~, around the bubble scales as uL/D. Secondly, we introduced 
a purely empirical factor to incorporate inclination effects, in particular, so as to force-fit the data 
for 0 = 10, 30, 45, 60 and 90 degrees to the established scalings for Newtonian fluids (see [17]). 
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The resulting expression for shear rate, namely 

~/I [- /z 0 X~ 3'2 // 0 x~ s/2 // 0 "~7!2 // 0 x~ 9/2"] 
• = 4 4 3 t - ~ )  + 

represents  an empir ica l  corre la t ion  w h i c h  p r o v i d e s  a pract ica l ly  useful  in t erpo la t i on  
inc l ina t ions  0 >~ 10 °. 

T h e  n o n - N e w t o n i a n  R e y n o l d s  n u m b e r  can be  expressed  as 

[19] 

over all 

pui D 
Re = - -  [20] 

K(~ ) " - '  

where K and n are the power  law constants  given in table 1. For  this comparison,  figure 16 shows 
[17], all our  data  for 90 degrees and Brown's  (1965) semi-empirical equat ion for vertical flow: 

[ Frl2j-  d' + 8FFrl-2'3 rFrl2J3 4r Fr -]2 
Ree_] " LRed - L R e e J  + L o - ~ J - 4 = 0  

also given in figure 15. This equat ion holds for 

Re > F r -  

[21] 

[22] 

and we only show the valid portion on figure 16. 
In discussing the implications of figures 15 and 16, it is helpful to distinguish the following ranges 

of Re. 

(a) Re > I000 

In this range the inertial forces dominate  for all inclinations. F t e n d s  to 1 as R e - - c o  and [10]-[! 5] 
are a good  approximat ion  even for rheologically complicated liquid phases. 

Co) Re < 3 

Here the correlation approximates to the empirical expression of Wallis (1969), now generalized 
to recognize that  an appropr ia te  effective shear rate expression must  be incorporated to give the 
apparent  viscosity. The flow around  the bubble is laminar and shear rates are low everywhere. The 
liquid const i tut ion resides in the highly non-linear region o f  the rheograms shown in figure 5. 
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Figure 15. Rise velocity data from figures 7-12 in terms of 
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(c) 3 > Re < lO00 

As Re is reduced from the inertially dominated region, the flow field around the bubble becomes 
more complex, with boundary layers becoming significant. It is noticeable here that in some 
instances the vertical pipe data provide the highest F values. However, this behaviour arises from 
the inadequacy of our approximation (see [10]) for voidage ~, correlated independently of  E6 (see 
appendix). This shortcoming in c affects our estimate of  V' and thus also the value of Fr (E6, O, ~ ) .  

The data in figure 15 approximately follow a logarithmic hyperbolic form. Using the asymptotic 
scalings given by Wallis (1969) and our own expression for high Re leads to the following 
semi-empirical fit for non-Newtonian effects: 

l o g l o F = p z "  !ogl0 e + q  + 1  + p ( l o g l 0 R e + q )  [23] 

where p = 0.25 and q = - 1.08 are constants equal to the gradient and extrapolated intercept on 
the log Re axis as found from [17]. Parameter z = - 0 . 8  governs the curvature of the correlation 
line in figure 16 and was chosen to give the best fit over all our data. Simultaneous solution of 
[23] and [15] in an iterative fashion thus allows the effects of  rheology on bubble rise to be 
characterized. Comparisons are shown for all our data in figures 7-12. The equation agrees best 
for our 0.045 m tube (E6 ~ 260). For the smaller tubes there is some error such that the predicted 
Fr are generally too low. In larger tubes the predicted Froude numbers are too high, although this 
defect is typically less than 10%. These inaccuracies are related to the inadequacies of  our simple 
method for estimating the shear rate manifested as scatter on figure 15 and due to our implicit 
assumption that elasticity is unimportant  here relative to inertial and viscous forces. Also, over the 
whole range of  E6 and for all liquids, Fr (0 = 90') is underestimated. This shortcoming is seen in 
figure 16 where [23] only passes through the low Re data points. Referring to figures 7, 10 and 
I I we see that the correlation for vertical Fr is best for the high concentration liquids. 

7. C O M P A R I S O N  W I T H  N E W T O N I A N  DATA 

Figure 17 shows comparisons between our semi-empirical correlation and data for Newtonian 
liquids from Runge & Wallis (in Wallis 1969) and Weber et al. (1986) who both reported data in 
terms of Fr, E6 and the Mo numbers, rather than in terms of specific diameters, fluids or bubble 
velocities. The data here were generalized for a pipe diameter of 0.025 cm, surface tension equal 
to 75 dyn/cm and density of 1.0 g/cm 3 consistent with a viscosity range of 0.001-5.0 Pa s. Rise 
velocities found under these conditions give rise to a Reynolds number range from 6250 to 0.125. 
Figure 17 (a)-(d) displays the data for lower viscosities and shows that our formulation 
underpredicts Fr by less than 10% or so. One exception is shown in figure 17(d) where our model 
diverges by 20% from data from Weber et al. at inclinations close to zero. However, recalling our 
comments  in section 1, we view their zero inclination results with suspicion. Figures 17(e) (h) 
contain comparisons for higher viscosities. Above 2 5  inclination the agreement is excellent and 
the correlation is shown to be a useful descriptive tool. At shallower angles divergence increases 
with decreasing inclination, discrepancies caused by the inadequacy of our method for normalizing 
the data, as depicted in figure 15. 

8. C O N C L U S I O N S  AND R E C O M M E N D A T I O N S  

A semi-empirical correlation has been proposed to describe the rise of  long bubbles in inclined 
(0 < 0 < 90) tubes. That part  of  the correlation scheme applicable to high Re flows is based on 
bubble rise data taken using pipes with diameters between 0.0216 and 0.178 m. Special attention 
has been paid to the excess weight of  fluid underflowing the bubble nose. This weight term increases 
with sharpness of  the nose region, resulting in higher rise velocities consistent with evidence 
reported in the literature (Weber et al. 1986). Increasing viscosity or increasing surface tension 
causes the nose region of the bubbles to become blunter and results in lower rise velocities. For 
viscosity dominated conditions (Re < 1), the rise speed is less dependent on inclination due to the 
slow drainage of fluid around the nose. 
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Inclination dependence of the rise speed in pseudoplastic media (n = 0.1901 to 0.485) falls into 
two zones. In nearly vertical pipes, the bubbles behave as if they were in Newtonian liquid 
possessing an apparent viscosity appropriate to the local strain-rate near the bubble nose. As the 
inclination is decreased, the rise velocity decreases and hence also the effective shear rate decreases, 
resulting in rapidly increasing apparent viscosity. Consequently, Fr approaches zero much more 
rapidly than in Newtonian liquids. An empirical expression for the effective shear rate dependence 
on velocity, diameter and inclination has been used to correlate the non-Newtonian Froude number 
with non-Newtonian bubble Reynolds number. This provides an empirical formula of  practical 
value for pipes above 0.02 m in diameter, based on non-Newtonian data taken using 0.025, 0.045 
and 0.07 m diameter pipes, where validation against Newtonian data from literature sources has 
extended over a broad range of Reynolds numbers from 6250 down to 0.125. 

Despite the good agreement between our correlation and Newtonian and non-Newtonian 
experimental data, only power law theology has been considered here. Moreover, whilst the steady 
strain rate response of our test liquids is broadly comparable (figure 5), they exhibit markedly 
different pouring and handling characteristics. Polyacrylamide is highly visco-elastic (Acharya et 
al. 1977), whereas NaOH modified Carbopol is probably only weekly elastic; indeed, a small 
Weissenberg effect was observed in preparatory mixing. Visco-elasticity may be expected to be an 
important  factor since the flow around the bubble nose involves unsteady shear and will, therefore, 
adjust according to the magnitude of the elastic component  and extensional viscosity effects; see 
Barnes et al. (1989). Normal  fluid stresses, absent in Newtonian fluid flow, might result in 
significant effects on the shape and velocity of  the bubble nose. Yield stress effects have already 
been mentioned and will lead to zero bubble speeds at inclinations close to the horizontal, especially 
in smaller diameter tubes. Indeed, there must exist a critical value of the ratio of yield to buoyancy 
forces for which bubble motion is arrested at all angles. Characterization of thixotropic effects on 
bubble behaviour is also required. 

Other factors which are likely to have important  effects on long bubble slip speed are the 
cross-sectional geometry and the bulk flow of the liquid phase. Geometrical configurations of  main 
practical interest for oilwells are concentric and eccentric annuli in which the liquid flows would 
display a broad range of velocity profiles upstream of the bubble, causing further readjustment of  
the interracial shape (Carew 1993; Carew & Thomas 1995) including displacement of  the nose tip 
away from the pipe wall. 

In addition to further experimental work, an improved theoretical basis is now required in order 
to elucidate the effects of rheological characteristics and upstream velocity profile on the excess 
volume term. Attention should also be paid to improving the formulation for void fraction c, i.e. 
the bubble nose shape. 
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A P P E N D I X  

Downstream Cross-sectional Geometry 

Benjamin (1968), Bendikson (1984) and Campos (1991) all assumed that the shape of the 
downstream film cross-sectional interface is given by a chordal geometry. In fact, the cross-sectional 
interface takes up a circular geometry when vertical and will be approximately chordal when the 
pipe is horizontal. In order to cover the whole range of inclinations we compromise by using a 
semi-elliptical cross-section [see figure l(b)]. The elliptical chord intersects the inside pipe 
circumference at the ends of a horizontal diameter and so has its major axis equal to D. The minor 
axis, lying in the vertical plane, is given by D - 26. From basic geometry we can then see that the 
wetted perimeter is, 

~zD 
Pw - [AI] 

2 

the area of a semi-ellipse is given by, 

, DFD_6~  [A2] 
As¢ = 2n 21_2 

leading to an expression for the cross-sectional void fraction, 

6 
~ : = I - - - -  

D" 
[A3] 

In order to evaluate the equilibrium film pressure force, $2, we need to consider the radial distance 
between the interface and the centre of  pressure. This can be found from a consideration of the 
moments of area of the ellipse and semi-circle about the lowermost point in a downstream 
cross-section, leading to the ratio of the distance from the interface to the diameter, 

44 
t - - -  [A4I = 5 - 4  3rt' 
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To ob ta in  values o f  c, we proceed as follows: 
(i) Use Z u k o s k i ' s  da t a  for u~ and the cont inu i ty  equa t ion  

/'/I 
u ,  - [ A 5 ]  

to secure m.  
(ii) Use the equi l ibr ium of  the downs t r eam film flow to write the average wall shear stress over  

the wetted per imeter  
rw = ~pgD • [1 - ~]sin 0. [A6] 

(iii) In t roduce  the fr ict ion factor ,  Cf, such that  

1 v 
r w = 5Cfpu'f [A7] 

where ur is the average film velocity,  relat ive to the wall, ra ther  than the bubble  nose, and is 
found from u, via 

uf = ~u2. [A81 

(iv) Use the empir ica l  fr ict ion fac tor  fo rmulae  for Cf in terms o f  the film Reynolds  number  

pufdh 
R e f -  - -  - 2~ Re [A9] 

¢t 
where 

4 x flow cross-sect ional  area  
dh = = 2D[1 - El. [A10] 

wet ted per imeter  

Using  a s imple i terat ive technique ~ can be ca lcula ted  as a funct ion o f  0 and pipe size (for air  and  
water)  as shown in 

16 
C f -  for Ref < 2000 [ A l l ]  

Ref 

C f = 0 . 0 7 9 R e  ,..4 2 0 0 0 < R e f < 1 0  s [AI2] 

1 
- 4 l o g t o [ R e f ~ r ]  - 0.4 R e f >  10 s [A13] 

figure 2 where we have also included our  own da t a  for air  and  water.  Since the var ia t ion  o f  ~ is 
not  a s t rong funct ion o f  Re (in this case) we have cor re la ted  with respect  to incl inat ion only.  This 
yields the expression,  

[0102308  
= 0.59 + 0.3031 90  [A14] 

which is also shown on figure 2 and,  in con junc t ion  with [11]-[! 5], a l lows ca lcula t ion  of  F r  for air  
and  water  when E6 > 60. 


